Operator-Lipschitz functions in Schatten–von Neumann classes
نویسندگان
چکیده
منابع مشابه
The Best Constants for Operator Lipschitz Functions on Schatten Classes
Suppose that f is a Lipschitz function on R with ‖f‖Lip ≤ 1. Let A be a bounded self-adjoint operator on a Hilbert space H. Let p ∈ (1,∞) and suppose that x ∈ B(H) is an operator such that the commutator [A, x] is contained in the Schatten class Sp. It is proved by the last two authors, that then also [f(A), x] ∈ Sp and there exists a constant Cp independent of x and f such that ‖[f(A), x]‖p ≤ ...
متن کاملOn fully operator Lipschitz functions
Let A(D) be the disc algebra of all continuous complex-valued functions on the unit disc D holomorphic in its interior. Functions from A(D) act on the set of all contraction operators (‖A‖ 1) on Hilbert spaces. It is proved that the following classes of functions from A(D) coincide: (1) the class of operator Lipschitz functions on the unit circle T; (2) the class of operator Lipschitz functions...
متن کاملThe ∂̄-neumann Operator on Lipschitz Pseudoconvex Domains with Plurisubharmonic Defining Functions
On a bounded pseudoconvex domain in C with a plurisubharmonic Lipschitz defining function, we prove that the ∂̄-Neumann operator is bounded on Sobolev (1/2)-spaces. 0. Introduction LetD be a bounded pseudoconvex domain in C with the standard Hermitian metric. The ∂̄-Neumann operator N for (p, q)-forms is the inverse of the complex Laplacian = ∂̄ ∂̄∗ + ∂̄∗∂̄ , where ∂̄ is the maximal extension of the C...
متن کاملLipschitz classes of A-harmonic functions in Carnot groups
The Hölder continuity of a harmonic function is characterized by the growth of its gradient. We generalize these results to solutions of certain subelliptic equations in domains in Carnot groups.
متن کاملKrein’s Trace Formula for Unitary Operators and Operator Lipschitz Functions
The spectral shift function for pairs of selfadjoint operators was introduced in the paper by I.M. Lifshits [17]. In the same paper a trace formula for the difference of functions of the perturbed operator and the unperturbed operator was established. Ideas by Lifshits were developed in the paper by M.G. Krein [14], in which the spectral shift function ξ in L1(R) was defined for arbitrary pairs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Mathematica
سال: 2011
ISSN: 0001-5962
DOI: 10.1007/s11511-012-0072-8